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Abstract. The article deals with non-commutative (boson) probability theory. The phase 
space considered is a linear symplectic space built up from a Hilbert space. Generating 
functionals for representations of the canonical commutation relations are related to 
characteristic functionals for random distributions on the underlying Hilbert space. An 
attempt is made to characterise those Uvy-Khinchin characteristic functionals on phase 
space which are generating functionals by means of a generalised Heisenberg inequality. 

1. Introduction 

For a state in quantum mechanics, projection of the Wigner phase-space distribution 
either onto momentum space or onto configuration space gives the correct probability 
distribution either for position or for momentum, respectively (Wigner 1932). 
However, as Wigner remarked (see also Moyal 1949, Hudson 1974) the phase-space 
distribution itself need not be a true probability distribution. Study of phase-space 
distributions has led to a non-commutative boson ‘probability’ theory. Instead of the 
phase-space distribution we work with its (inverse) Fourier transform, the generating 
functional. The generating functional for a state of the canonical commutation rela- 
tions (CCR) plays the role of the characteristic functional, i.e. the Fourier transform 
of the probability distribution, in commutative probability theory. Skew positive 
definiteness (Segal 196 1) of the boson generating functional is the non-commutative 
analogue of the positive definiteness of the characteristic functional of a random 
distribution. 

One can define characteristic functionals on a linear phase space (definition 1); 
the set of generating functionals and the set of characteristic functionals intersect but 
do not coincide. However, a natural mapping of characteristic functionals to generating 
functionals gives a one-to-one correspondence between the orthogonal-invariant 
characteristic functionals and the unitary-invariant generating functionals (proposition 
2). 

An important class of random processes, including for example white noise and 
the classical Poisson process, is that of decomposable processes (see Guichardet 1972, 
appendix E). These have characteristic functionals of the LCvy-Khinchin type and 
are characterised in theorem 1. Generating functionals of the LCvy-Khinchin type 
occur in fields of uncoupled oscillators (Araki 1960) and for (continuous) tensor 
product states for the CCR (Guichardet and Wulfsohn 1970). Characterisations of 
those Lbvy-Khinchin characteristic functionals which are also generating functionals 
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are given in propositions 3 and 4 and theorem 2. Fischer (1981) considers similar 
questions but is concerned with one degree of freedom only and concentrates on 
extreme points in the set of those characteristic functionals which are also generating 
functionals. 

Lemma 3 was contributed by Professor H Araki. 

2. Representations of the canonical commutation relations 

Let {E, ( I j} be a real Hilbert space. Denote by M, the Hilbert space EOiE with 
inner product 

(2 i , z ;  = iE(x1Ixd + (Y 4 ~ 2 )  + iS(y1lxZ) - (xllyz)H 

where z ;  = 2 - " 2 ( x m  Oiy,) and xm. ym E E, m = 1, 2. Let M denote the Hilbert space 
E @E with inner product 

( ~ 1 1 2 2 ) ~  =Re(z;, 2;) = ~ ~ ( x ~ l x ~ ) + ( v ~ l ~ ~ ) l  

where z ,  = 2-"2(x, Oy,). The space M,  is a complexification of M by means of the 
linear involution J :  x 0  y + (-y)Ox (cf definition 3). Note that M and M,  have the 
same norm. 

A skew-symmetric bilinear form is called symplectic. A non-degenerate symplectic 
form a can be defined on M by 

u iz l ,  2 2 )  = -Im(z;, z ; )  = ~ S ( X ~ I Y ~ ) - ( Y I / X ~ ) I .  

A representation of the linear symplectic space (M, a) in a Hilbert space H is defined 
to be a mapping W of M to unitary operators of H, strongly continuous on every 
finite-dimensional subspace and satisfying the commutation relations 

W(z1 + z J  = expEia(zl, z ~ ) l W ( z ~ ) W ( z d  

for all zl, z2 E M .  We can replace W by a pair (U, V) of unitary representations of 
E, continuous on finite-dimensional subspaces and satisfying 

Vix)V(yj  = exp[-i(x/y)]V(y)U(x). 

A representation of (M, (T) is also called a representation of the CCR. 
In a quantum mechanical system, configuration (wavefunction j space can be taken 

to be a pre-Hilbert space E ;  its dual space F is referred to as momentum (wavefunction) 
space. For a formulation of the CCR, phase space is identified with the direct sum 
EOF. For our purposes there is no loss in generality in assuming E to be a Hilbert 
space and identifying F with E. If E is n dimensional one says that the system has 
n degrees of freedom. 

The representation WO = ( Uo, Vo) of (M, (T) in L2(F)  defined by 

( V O ( X E ) ( S )  = exp[-i(xb)l5(s) (VO(Y )5) (s )  = 5 b  - Y I 

is called the Schrodinger representation. Because we have chosen our inner products 
to be linear in the first variable, the U and V of the usual physics notation are 
interchanged. 

Definition 1. (Segal 1961). A complex-valued function 'P on a vector space H is 
called positive definite if, for all positive integers n and x l r  xZr . . . , x,, EH, the matrices 
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[ q ( x p  - ~ ~ ) ] l ~ ~ , ~ < ,  are positive definite. A complex-valued function Q on a symplectic 
space (M, a) is called skew positive definite if, for all positive integers n and 
zl, z2, . . . , z, EM, the matrices [exp[ia(z,, z4)]Q(zP - z ~ ) ] ~ ~ ~ , ~ ~ ~  are positive definite. 
A positive-definite function Q on H, continuous on each finite-dimensional subspace 
and satisfying q ( 0 )  = 1, is called a characteristic functional on H. A skew positive- 
definite function @ on (M, a), corttinuous on each finite-dimensional subspace and 
verifying @(O) = 1, is called a generating functional for a representation of (M, a). 

3. Results on complete positivity 

In this section we relate, for a given state, positivity of an operator-valued matrix and 
of the matrix whose entries are the expectation values with respect to that state. 
Although propositions l(6) and (c) can be deduced from results of Choi (1972) 
together with results of Choi and Effros (1977), I have included a proof which is direct 
and which uses only elementary mathematics. 

Let A be an arbitrary C* algebra. Denote the algebra of n x n matrices by M, 
and n-dimensional Hilbert space by H,. Let L(H) and TC(H) respectively denote 
the algebras of bounded linear operators and of trace class operators on a Hilbert 
space H. Consider L and TC in duality, identifying L and TC’ with the trace as bilinear 
form. Denote the Banach dual of A by A’, the positive part of A by A+. 

For Banach spaces X and Y denote by L(X, Y) the vector space of bounded linear 
mappings from X to Y. We identify the vector spaces M, (A) = A 0 M, and L(M,, A) 
by the correspondence T([ap4]) = Zlsp,q6n apqTpq. We identify L(M,, A) and L(A’, M,) 
so the condition that T E M,, (A) is positive in L(A’, M,)  (i.e. that the matrices [w ( Tp4)] 
are positive definite for all positive linear functionals w of A) is equivalent to that T 
is positive in L(M,, A). 

Let D be the cone in TC(H 0 H,) generated by the operators of the form p1 0 p 2 ,  
where p1 E TC(H)+, p 2  EM:. Let C denote the cone L(H 0 Ha)+. 

Lemma 1 .  The polar Do of D can be identified with the set of operators T in 
L(H 0 H,,) such that [w ( Tp4)] L 0 for each positive linear functional w on L(H). 

Proof. By linearity, T E Do if and only if Tr((pl 0 p2)T)  3 0 for all p1 E TC(H) and p2 

of the form [A&]. For T E L(H 0 H,),  we have 

T r ( h  0 p d T )  = T r ( x  A&plTp4) = E  A& Tr(plTp4). 
P.4 P.4 

Thus Tr((pl 0 p 2 ) T )  2 0 if and only if [Tr(plTp4)] 3 0. Identifying TC(H)+ with the 
positive linear functionals of L(H) the lemma follows. 

Proposition 1. Let H and H,, be Hilbert spaces, dim H, = n > 1, dim H > 1. ( a )  Let 
A be a commutative C* algebra on a real or complex Hilbert space K and let 
T EM,(A), n > 1. If for all vector states w of A the matrices [w(T,)] are positive 
definite, then T L 0 in M,(A). (6) There exists T E L(H 0 H,), TiZ L(H 0 H,,)+, such 
that [w(T, ) ]aO for all positive linear functionals w on L(H). (c) Let A = L(H). If 
T 2 0 in M, (A)  then T 3 0 in L(A’, M,,), but the converse does not always hold. 

Proof. ( a )  We may assume that K = L2(K,  B, p )  and A L“(X, By p )  for some 
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finite-measure space (X, B, p) .  Since (L1)+ c A’, by hypothesis 
[ jxf(x)T,(x) d p  ( x ) ]  3 0 for all f~ (L’)+. Thus [ T,(x)] 3 0 almost everywhere with 
respect to p. Writing I(/ = (&, 1 4 ~ ~  . . . , $,) E Ki where each Ki = K 

( T ~ I I ( / ) = ~  J li;,(x)TP4(X)I(/P(X)dCL(X)= J ( [ T ~ , ( X ) I I ~ ( X ) I I ( / ( X ) ) ~ ~ ( X ) ~ O  

so T s O .  
P.4 x X 

(6) Let n = 2, dim H = 2. Choose T of the form 

[;j ;; - ~ ~ .  

The leading minors are all positive and det T = 1 - A  ’. Any positive linear functional 
w on M z  may be represented by a non-negative matrix [: 21 with a 2 0, a + d 3 0 and 
ad - bc ZO. So [w(T,)] = a + d ]  is positive definite when A s d2. Thus taking 
A E [ 1,421, the theorem is true for the above case. In general, for dim H > 1, n > 1 
the above T can be identified with an element of L(H 0 H,). 

a+d -hc 

(c) Obviously CO z) D, so Do =I Coo 3 C but by (b), C #Do.  

We relate the above results to the more general concept of complete positivity. 
Complete positivity can be defined for linear mappings between matrix-ordered 
spaces, as defined by Choi and Effros (1977); we are concerned only with A and A’, 
both known to be matrix ordered. Given matrix-ordered spaces V and W, a linear 
mapping cp : V -* W is completely positive if for each n E N the mapping cp, : M, ( V )  -* 
M,( W ) ,  defined by q,,([v,]) = [cp(v,)], is positive. By lemma 4.3 of Choi and Effros 
(1977), T 3 0 in M,(A) if and only if T is completely positive in L(A’, M,). Thus 
proposition l ( a )  shows that, in the commutative case, positivity and complete positivity 
are equivalent for the mapping w + [w(T,)] from A’ to M,. This generalises Stine- 
spring’s (1955) result on continuous linear functionals. 

4. Characteristic functionals and generating functionals 

Positive-definite functions are not necessarily skew positive definite; an example is 
the function Po identically 1. We describe below a class of skew positive-definite 
functions which are not positive definite. 

Consider the Schrodinger representation of (M, (T) for finite-dimensional M = R2”. 
Take L2 relative to Lebesgue measure. The Hermite functions, defined for n E N by 

l, (s) = (2“n ! v’G)-’’2 exp(- 3 s 2 ) ~ ,  (s) 

where H,  denotes the Cth Hermite polynomial, form an orthonormal basis for L2(R8). 
The Fourier transform CP, of the generating functional a,,, where CP, (2) = ( Wo(z)&lSn), 
is called the phase-space distribution of the stationary state (vector) l,,. None of the 
a,, excepting CPo, are positive definite; indeed the a,, and therefore $0 the &,, are 
mutually orthogonal in L2 and &,,(w) = exp(-$\1w112)30 so the other CP, are negative 
on sets of positive measure. An example is &I(w)  = (4ll~11~- 1) exp(-2)l~11~), negative 
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whenever llwll<3. For m degrees of freedom one can similarly define a,,, n = 
(n l ,  n2,  . . . , nm), from analogous Hermite functions in L2(Rm) .  The a,,, n # 0, can be 
extended canonically to generating functionals, not positive definite, on any linear 
phase space. 

The following lemma is well known (cf Schur 1911). 

Lemma 2. If [a,,] and [b,,] are positive-definite matrices, then the matrices [aP4bP4] 
and [exp(a,,)] are also positive definite. 

Let 0 be a generating functional. Since 

~ ( z b  -zb) exp{-$Izb -z:i12> 

= ~ ( Z L  - 2 : )  exp{-i Im(zb, 2 : ) )  x exp{-4(llzbI12+ IIz:I12)) x exp{(zb, zb)> 

each factor the ( p ,  q)th entry of a positive-definite matrix, the operation of multiplica- 
tion by exp(- $ 1 1 ~  / I 2 )  maps generating functionals to characteristic functionals; this 
exhibits the well known fact that normal-ordered phase-space distributions are non- 
negative. A similar normalising mapping occurs in the following proposition. 

We associate with (M, a) a von Neumann algebra AM,u such that there is a bijection 
between its normal states and the set of generating functionals for ( M , a )  (see 
Guichardet 1968). 

Proposition 2. Let U(M, a)  denote the group of automorphisms of AM,u induced by 
the unitary group of M,. The operation P, defined by ( P 9 ) ( z )  = exp(-$llzl12)9(z), 
maps characteristic functionals on M to generating functionals on (M, a )  and gives 
rise to a bijection of the set of orthogonal-invariant characteristic functionals on M 
onto the set of normal states of AM,u invariant for U(M, a). 

Proof. The first statement holds since the product of a skew positive-definite function 
by a positive-definite function is skew positive definite. As in Umemura (1950), the 
characteristic functionals invariant under the orthogonal group of M can be shown 
to be of the form j: exp(-$Allz)12) dm(A) where m denotes a probability measure on 
[0, +CO), and as in Segal (1962), the states of AMSu invariant under U(M, a)  can be 
shown to be of the form 5: exp(- $A l l ~11~)  dn(A) where n denotes a probability measure 
on [ l ,  +CO); the proposition follows. 

Definition 2. A function on a real Hilbert space V is called a LCvy-Khinchin function 
if it is of the form 

$A,"," : x -* exp ( i(u Ix) -$(Ax Ix 1 + jvK(u,  x)  dv (U)) 

where A is a symmetric operator on V, 

~ ( u ,  x )  = exp[i(ulx)]- 1 -i(uIx)(l +l l~11~)- '  
and v is a a-finite measure on the Bore1 sets of V satisfying 

We shall write T A  to denote ~ A , o , o .  
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Lemma 3. 

lim A-' j v K ( v ,  A x )  dv(v) = 0. 
A +OD 

Proof. Let 

For any given E > 0, we choose aF > 0 such that 

I2(aAllxlI2 + llxll) < E .  

a e  -2 (4+ / Ihx l l ) IG$A2~.  
For this a,, we choose A, > 1 such that, for all [ A  I > nE, 

We then have 

Theorem 1. The LCvy-Khinchin function V \ V A , ~ , ~  is positive definite if and only if A 2 0. 

Proof. The function Vo,u,v is positive definite (see Parthasarathy 1967). It follows 
from lemma 2 that YA,u,v also is positive definite. To prove the converse it is sufficient 
to find y satisfying 

2(1 -Re eieV(y)) = Y(0 -0) +Y(y - y )  -eieV(y -0) -e-"V(O- y )  < 0 

for some real 6, where !I! = 
( A x I x )  < 0. Then 

If A 3 0 does not hold there exists x such that 

/ V ( h x ) / = e x p ( A ' [ - f ( A x / x ) + A - ' R e  I V K ( v ,  A x ) d v ( o ) ] ) .  
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By lemma 3, there exists A > 1 such that, for A > A ,  

- i (Ax/x)  + A - 2  Re K(u, A x )  dv(u) > -$(Ax/x) > 0. I, 
For anyone such A, choose 6 so that eiB9(Ax) = 19(Ax)\. Then we have Re eiH9(Ax) > 1. 

Lemma 4. Let A be a Hermitian operator on a (real or complex) Hilbert space H 
of dimension greater than one. A necessary and sufficient condition that for all positive 
integers n and ZI ,  ZZ, . . . , z ,  E H the matrices [exp{(Az,lz,))] lrp,q-cn be positive definite 
is that A 3 0. 

Proof. The sufficiency is evident from lemma 2. To prove the necessity we suppose 
that A 2 0  and find a version of the matrix which is not positive definite. Choose z1 
and z2 linearly independent and such that (.4(zl -z2)/z:  -- z2)< 0. Thus (At l l z l )+  
(Az2lz2) < (Az1/z2) + (Az21z1). By exponentiating this inequality it is easily seen that 
the determinant of the matrix [exp{(Az,~z, ) ) ] l ~ p , q c 2  is negative. 

Definition 3. We define a transform J on M,  by J ( x  Oil.) = (-y) Oix. It is anti-unitary, 
V ( J y )  = V(-y)  and U(J.r) = V ( x ) .  Thus J is the operator, defined by Araki (1960), 
describing a reversal of motion at fixed time. We denote the restriction of J to M also 
by J. By identifying L(MJ with L(E) 0 Mz(@) we may express T E L(MJ as a 2 x 2 
matrix [T,,] with entries in L(E).  We extend S E L(MI to L(M,) and denote S +4iJ 
by S'. If 

then 

Note that if T 3 0 on M, then also T 3 0 on M. 

Proposition 3. A LCvy-Khinchi I characteristic functional ~ \ V S , ~ , +  on M is skew positive 
definite if and only if S" 3 0 on M. 
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as 9u,u.n(~).  If 9/s,u,v is skew positive definite then 

[ @ Y - u , , , n ~ ~ . u , u ( z p  - 2,)  exp{idz,, 

is positive definite. So, letting m +CO,  also [exp{(S"~~/z,)~)]~,~,,,, will be positive 
definite. By lemma 4, S'a 0. 

Definition 4. For a given 9s,u,v, we call the relation [(S',,xlx)] a 0 for all x E E, i.e. 

(Axlx)(Bxlx)-(Cxlx)(C*xiX)-$(xlX)*aO forall x € E , A a O  

the Heisenberg inequality. 
We know from proposition 1 that the Heisenberg inequality need not imply that 

S"a0 on M but that, if the S,,, are commuting operators, then the Heisenberg 
inequality implies that S'aO. Thus, for one degree of freedom, the Heisenberg 
inequality is equivalent to the condition that S'a 0 on M, and so, as is well known 
(see Araki 1960), for one degree of freedom the Heisenberg inequality is necessary 
and sufficient for Ys,u,v to be a generating functional. 

Proposition 4. In order that a L6vy-Khinchin characteristic functional 9s,u,v on M be 
a generating functional for (M, r )  it is sufficient, but not generally necessary, that 
S'SO on M,. 

Proof. If S" a 0 on M, then also S'a 0 on M and, by proposition 3, YS,~," is a generating 
functional; on the other hand, were S" 2 0 a necessary condition, Sc 2 0 on M would 
imply S'a 0 on M,, not generally true. 

Theorem 2. Given a Levy-Khinchin characteristic functional on M, if it is a generating 
functional for (M, r )  then the Heisenberg inequality is satisfied. When the number 
of degrees of freedom is greater than one the Heisenberg inequality is not generally 
sufficient for the characteristic functional to be a generating functional. 

Proof. Suppose that $s,u,v is a generating functional. Let 21 =0,  2 2 = A x 0 0  and 
~ 3 = 0 @ A x ,  where x EE, A ER. Letting A be small enough that one may neglect 
powers of A higher than 4, the determinant of the 3 x 3  matrix [$s,LI,y(zp- 
zq)  exp{ia(t,, z,)}] can be seen to be 

(Ax Ix) + 2 [l - COS(U Ix)] duj  U )  [(Ax I x ) ( B x ] x )  - (Cx Ix)(C*'xix) - $(x Ixl2]]. I 
Since 9s,u,v is a characteristic functional, S 3 0 by theorem 2 .  So also A 3 0 and, since 
the above mentioned determinant is non-negative, the Heisenberg inequality is 
satisfied. To prove the second statement of the theorem we find an S a 0 such that 
S' is not non-negative and the Heisenberg inequality holds. For two degrees of 
freedom let 

E A O  

A 0 1 0  
O h 0 1  
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and write x = (:;). For x 2  # 0 and X = xlx;'  

det[(SLxlx)]= aX4+4bX3+6cX2+4bX+a  

where a = (:-A2), b = $ E  and c =$a. When x 2  = 0 then det[(S;,x/x)] = ax;. Thus if 
a > 0 and the biquadratic has no real roots then the Heisenberg inequality is satisfied. 
Thisissoif ac-b2>Oand h =a2c+2b2c-ab2-c3>0  (Burnsideandpanton 1912). 
Choosing A=0.8, ~ = 0 . 1 2 ,  then S S O ,  a=0.11 ,  ac-b2>0.004, h>0.0002, while 
S' is not non-negative, having determinant & - $?A + A - E < -0.002. 
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